Rohit K. Thapa1,2, Gopal Kumar3, Gaurav Kundu3, Preeti Yadav3, Andrew Sortwell4,5, Rodrigo Ramirez-Campillo6
1Symbiosis School of Sports Sciences, Symbiosis International (Deemed University), Pune, India
2School of Physical Education and Sports, Rashtriya Raksha University, Gandhinagar, India
3Department of Exercise Physiology, Lakshmibai National Institute of Physical Education, Gwalior, India
4School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Sydney, Australia
5Research Centre in Sports Sciences, Health Sciences and Human Development, Covilhã, Portugal
6Exercise and Rehabilitation Sciences Institute, School of Physical Therapy,
Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
Intra- and inter-session reliability of countermovement jump and gait analysis in collegiate athletes measured using an inertial measurement unit (BTS G-Walk)
Monten. J. Sports Sci. Med. 2024, 13(2), 37-47 | DOI: 10.26773/mjssm.240905
Abstract
This study assessed the intra- and inter-session reliability of the inertial measurement unit (IMU) in measuring countermovement jump (CMJ) and 10m-walking gait-related outcomes. Thirty collegiate-level athletes (15 males [age: 21.0 ± 2.5 years] and 15 females [age: 21.5 ± 2.1 years]) were recruited to perform CMJs and 10m-walking test that were simultaneously recorded using the commercially available body-worn IMU – BTS G-walk. The coefficient of variation (CV), the analysis of variance with repeated measures (ANOVA), and the interclass correlation coefficient (ICC) were used for intra-session reliability. While the Pearson’s correlation coefficient (r) and the ICC were used to analyze inter-session reliability. Measurement of CMJ and 10m-walking test gait variables using the IMU resulted in moderate to excellent intra-session reliability for CMJ (ICC = 0.881 to 0.988) and gait analysis (ICC = 0.807 to 0.978) with acceptable CV (≤10%). Inter-session reliability for CMJ variables ranged from poor to excellent (ICC = 0.134 to 0.963), and 10-m walking test gait analysis variables were moderate to excellent (ICC = 0.683 to 0.931). The IMU (BTS G-walk) provides reliable data for most CMJ and gait variables. Future studies may determine the accuracy of the equipment to monitor changes over time (e.g., after a training intervention).
Keywords
Plyometric exercise, athletic performance, exercise, sports medicine, athletic performance, human movement
View full article
(PDF – 206KB)
References
Alanen, A., Räisänen, A., Benson, L., & Pasanen, K. (2021). The use of inertial measurement units for analyzing change of direction movement in sports: A scoping review. International Journal of Sports Science & Coaching, 16(6), 1332-1353. https://doi.org/10.1177/17479541211003064
Andrenacci, I., Boccaccini, R., Bolzoni, A., Colavolpe, G., Costantino, C., Federico, M., Ugolini, A., & Vannucci, A. (2021). A comparative evaluation of inertial sensors for gait and jump analysis. Sensors (Basel), 21(18). https://doi.org/10.3390/s21185990
Bishop, C., Jordan, M., Torres-Ronda, L., Loturco, I., Harry, J., Virgile, A., Mundy, P., Turner, A., & Comfort, P. (2023). Selecting metrics that matter: Comparing the use of the countermovement jump for performance profiling, neuromuscular fatigue monitoring, and injury rehabilitation testing. Strength & Conditioning Journal, Ahead of Print, 10.1519/SSC.0000000000000772. https://doi.org/10.1519/ssc.0000000000000772
Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors (Basel), 18(3). https://doi.org/10.3390/s18030873
Claudino, J. G., Cronin, J., Mezêncio, B., McMaster, D. T., McGuigan, M., Tricoli, V., Amadio, A. C., & Serrão, J. C. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. J Sci Med Sport, 20(4), 397-402. https://doi.org/10.1016/j.jsams.2016.08.011
Clemente, F., Badicu, G., Hasan, U. C., Akyildiz, Z., Pino-Ortega, J., Silva, R., & Rico-González, M. (2022). Validity and reliability of inertial measurement units for jump height estimations: A systematic review [journal article]. Human Movement, 1-20. https://doi.org/10.5114/hm.2023.111548
Clemente, F. M., Akyildiz, Z., Pino-Ortega, J., & Rico-González, M. (2021). Validity and reliability of the inertial measurement unit for barbell velocity assessments: A systematic review. Sensors (Basel), 21(7). https://doi.org/10.3390/s21072511
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. https://doi.org/10.1037/0033-2909.112.1.155
Cormack, S. J., Newton, R. U., McGuigan, M. R., & Doyle, T. L. (2008). Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform, 3(2), 131-144. https://doi.org/10.1123/ijspp.3.2.131
De Ridder, R., Lebleu, J., Willems, T., De Blaiser, C., Detrembleur, C., & Roosen, P. (2019). Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J Sport Rehabil, 28(6). https://doi.org/10.1123/jsr.2018-0295
DeVita, P., Hortobagyi, T., & Barrier, J. (1998). Gait biomechanics are not normal after anterior cruciate ligament reconstruction and accelerated rehabilitation. Med Sci Sports Exerc, 30(10), 1481-1488. https://doi.org/10.1097/00005768-199810000-00003
Fukuchi, C. A., Fukuchi, R. K., & Duarte, M. (2019). Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst Rev, 8(1), 153. https://doi.org/10.1186/s13643-019-1063-z
Gallardo-Fuentes, F., Gallardo-Fuentes, J., Ramírez-Campillo, R., Balsalobre-Fernández, C., Martínez, C., Caniuqueo, A., Cañas, R., Banzer, W., Loturco, I., Nakamura, F. Y., & Izquierdo, M. (2016). Intersession and intrasession reliability and validity of the my jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res, 30(7), 2049-2056. https://doi.org/10.1519/jsc.0000000000001304
García-Pinillos, F., Ramírez-Campillo, R., Boullosa, D., Jiménez-Reyes, P., & Latorre-Román, P. (2021). Vertical jumping as a monitoring tool in endurance runners: A brief review. J Hum Kinet, 80, 297-308. https://doi.org/10.2478/hukin-2021-0101
Gathercole, R. J., Sporer, B. C., Stellingwerff, T., & Sleivert, G. G. (2015). Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res, 29(9), 2522-2531. https://doi.org/10.1519/jsc.0000000000000912
Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res, 25(2), 556-560. https://doi.org/10.1519/JSC.0b013e3181ccb18d
Gogoi, H., Rajpoot, Y. S., & Borah, P. (2021). A prospective cohort study to predict running-related lower limb sports injuries using gait kinematic parameters. Teorìâ Ta Metodika Fìzičnogo Vihovannâ, 21(1), 69-76.
Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Med, 30(1), 1-15. https://doi.org/10.2165/00007256-200030010-00001
Kobsar, D., Charlton, J. M., Tse, C. T. F., Esculier, J.-F., Graffos, A., Krowchuk, N. M., Thatcher, D., & Hunt, M. A. (2020). Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 17(1), 62. https://doi.org/10.1186/s12984-020-00685-3
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of chiropractic medicine, 15(2), 155-163. https://doi.org/10.1016/j.jcm.2016.02.012
Kumar, G., Pandey, V., Thapa, R. K., Weldon, A., Granacher, U., & Ramirez-Campillo, R. (2023). Effects of exercise frequency with complex contrast training on measures of physical fitness in active adult males. Sports (Basel), 11(1). https://doi.org/10.3390/sports11010011
Lacy, A. C., & Williams, S. M. (2018). Measurement and evaluation in physical education and exercise science. Routledge.
Moir, G. L., Garcia, A., & Dwyer, G. B. (2009). Intersession reliability of kinematic and kinetic variables during vertical jumps in men and women. Int J Sports Physiol Perform, 4(3), 317-330. https://doi.org/10.1123/ijspp.4.3.317
Nam, Y., Kim, Y., & Lee, J. (2016). Sleep monitoring based on a tri-axial accelerometer and a pressure sensor. Sensors (Basel), 16(5). https://doi.org/10.3390/s16050750
Niswander, W., Wang, W., & Kontson, K. (2020). Optimization of imu sensor placement for the measurement of lower limb joint kinematics. Sensors (Basel), 20(21). https://doi.org/10.3390/s20215993
O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable inertial sensor systems for lower limb exercise detection and evaluation: A systematic review. Sports Med, 48(5), 1221-1246. https://doi.org/10.1007/s40279-018-0878-4
Pueo, B., Lipinska, P., Jiménez-Olmedo, J. M., Zmijewski, P., & Hopkins, W. G. (2017). Accuracy of jump-mat systems for measuring jump height. Int J Sports Physiol Perform, 12(7), 959-963. https://doi.org/10.1123/ijspp.2016-0511
Requena, B., García, I., Requena, F., Saez-Saez de Villarreal, E., & Pääsuke, M. (2012). Reliability and validity of a wireless microelectromechanicals based system (keimove™) for measuring vertical jumping performance. J Sports Sci Med, 11(1), 115-122.
Simon, S. R. (2004). Quantification of human motion: Gait analysis-benefits and limitations to its application to clinical problems. J Biomech, 37(12), 1869-1880. https://doi.org/10.1016/j.jbiomech.2004.02.047
Tao, W., Liu, T., Zheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors (Basel), 12(2), 2255-2283. https://doi.org/10.3390/s120202255
Thapa, R. K., & Kumar, G. (2023). Does complex contrast training induce higher physical fitness improvement in stronger compared to weaker individuals? Montenegrin Journal of Sports Science and Medicine, 12(1), Ahead of Print.
Timoney, J. M., Inman, W. S., Quesada, P. M., Sharkey, P. F., Barrack, R. L., Skinner, H. B., & Alexander, A. H. (1993). Return of normal gait patterns after anterior cruciate ligament reconstruction. Am J Sports Med, 21(6), 887-889. https://doi.org/10.1177/036354659302100623
Van Hooren, B., & Zolotarjova, J. (2017). The difference between countermovement and squat jump performances: A review of underlying mechanisms with practical applications. J Strength Cond Res, 31(7), 2011-2020. https://doi.org/10.1519/jsc.0000000000001913
Vítečková, S., Horáková, H., Poláková, K., Krupička, R., Růžička, E., & Brožová, H. (2020). Agreement between the gaitrite(®) system and the wearable sensor bts g-walk(®) for measurement of gait parameters in healthy adults and parkinson's disease patients. PeerJ, 8, e8835. https://doi.org/10.7717/peerj.8835
Wadhi, T., Rauch, J. T., Tamulevicius, N., Andersen, J. C., & De Souza, E. O. (2018). Validity and reliability of the gymaware linear position transducer for squat jump and counter-movement jump height. Sports, 6(4), 177. https://www.mdpi.com/2075-4663/6/4/177