kaufen sie steroide online in deutschland
Force-Velocity Profiles of Elite Athletes Tested on a Cycle Ergometer - Montenegrin Journal of Sports Science and Medicine

Predrag R. Bozic1,2, Bobana Berjan Bacvarevic2

1Serbian Institute of Sport and Sports Medicine, Belgrade, Serbia
2University of Montenegro, Faculty for Sport and Physical Education, Niksic, Montenegro

Force-Velocity Profiles of Elite Athletes Tested on a Cycle Ergometer

Monten. J. Sports Sci. Med. 2018, 7(1), 59-66 | DOI: 10.26773/mjssm.180308


The present study explored the sensitivity of the force-velocity (F-V) modelling approach obtained from maximal sprints on a leg cycle ergometer to detect selective changes of the mechanical capacities of the lower body muscles associated with high-level training. Specifically, we assumed that the F-V relationship parameters, such as maximum force (F0), velocity (V0), power (PM) and slope, would differ among individuals of different high-level training backgrounds. In total, 111 elite athletes divided into four groups (Combat sports, Athletic sprints, Team sports and Physically active) performed maximal sprints on a leg cycle ergometer loaded with 7%, 9%, and 11% of body weight. The findings obtained suggest an exceptionably strong and linear F-V relationship in most of the participants (r > 0.95), while higher PM have been found in all groups of athletes compared to the Physically active group (p < 0.05). In addition, sport-specific F-V profiles have been observed in athletes that belong to distinctively different sports (i.e. higher F0 and force-oriented slope for strength-trained Combat sports and higher V0 for speed-trained Athletic sprints). To our knowledge, this is one of the rare studies that evaluate the F-V profiles with such a large sample of elite athletes obtained from commonly used task such as maximal sprints on a leg cycle ergometer. The results obtained support a high sensitivity of the F-V modelling approach to distinguish among elite athletes with different training histories.


sprint cycling test, force-velocity relationship, sensitivity, linear regression, elite athletes

View full article
(PDF – 505KB)


Apostolidis, N., Nassis, G. P., Bolatoglou, T., & Geladas, N. D. (2004). Physiological and technical characteristics of elite young basketball players. Journal of Sports Medicine and Physical Fitness, 44(2), 157–163.

Chaabene, H., Negra, Y., Bouguezzi, R., Mkaouer, B., Franchini, E., Julio, U., & Hachana, Y. (2016). Physical and physiological profile of wrestler athletes. Journal of Strength and Conditioning Research, (Epub ahead of print).

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Statistical Power Analysis for the Behavioral Sciences.

Cormie, P., McGuigan, M. R., & Newton, R. U. (2011a). Developing maximal neuromuscular power: Part 1 - Biological basis of maximal power production. Sports Medicine.

Cormie, P., McGuigan, M. R., & Newton, R. U. (2011b). Developing maximal neuromuscular power: Part 2 training considerations for improving maximal power production. Sports Medicine, 41(2), 125–146.

Cuk, I., Mirkov, D., Nedeljkovic, A., Kukolj, M., Ugarkovic, D., & Jaric, S. (2016). Force–velocity property of leg muscles in individuals of different level of physical fitness. Sports Biomechanics, 15(2), 207–219.

Dotan, R., & Bar-Or, O. (1983). Load optimization for the wingate anaerobic test. European Journal of Applied Physiology and Occupational Physiology, 51(3), 409–417.

Driss, T., Vandewalle, H., Le Chevalier, J.-M., & Monod, H. (2002). Force-velocity relationship on a cycle ergometer and knee-extensor strength indices. Canadian Journal of Applied Physiology = Revue Canadienne de Physiologie Appliquée, 27(3), 250–62.

Enoka, R. M. (1997). Neural adaptations with chronic physical activity. Journal of Biomechanics.

Evans, J. A., & Quinney, H. A. (1981). Determination of resistance settings for anaerobic power testing. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport, 6(2), 53–56.

Feeney, D., Stanhope, S. J., Kaminski, T. W., Machi, A., & Jaric, S. (2016). Loaded vertical jumping: Force-velocity relationship, work, and power. Journal of Applied Biomechanics, 32(2), 120–127.

Franchini, E., Del Vecchio, F. B., Matsushigue, K. A., & Artioli, G. G. (2011). Physiological profiles of elite judo athletes. Sports Medicine, 41(2), 147–166.

Gabbett, T., Georgieff, B., & Domrow, N. (2007). The use of physiological, anthropometric, and skill data to predict selection in a talent-identified junior volleyball squad. Journal of Sports Sciences, 25(12), 1337–1344.

García Ramos, A., Torrejón, A., Morales Artacho, A. J., Pérez Castilla, A., & Jaric, S. (2017). Optimal Resistive Forces For Maximizing The Reliability Of Leg Muscles Capacities Tested On A Cycle Ergometer. Journal of Applied Biomechanics, (Epub ahead of print).

Giroux, C., Rabita, G., Chollet, D., & Guilhem, G. (2016). Optimal balance between force and velocity differs among world-class athletes. Journal of Applied Biomechanics, 32(1), 59–68.

Harland, M. J., & Steele, J. R. (1997). Biomechanics of the sprint start. Sports Medicine (Auckland, N.Z.), 23(1), 11–20.

Jaric, S. (2002). Muscle strength testing: Use of normalisation for body size. Sports Medicine, 32(10), 615–631. [pii]

Jaric, S. (2015). Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks. International Journal of Sports Medicine.

Jaric, S. (2016). Two-Load Method for Distinguishing Between Muscle Force, Velocity, and Power-Producing Capacities. Sports Medicine, 46(11), 1585–1589.

Jenkins, S. (2012). Talent Identification and Development in Sport: International Perspectives, Joseph Baker, Steve Cobley and Jörg Schorer (eds.). International Journal of Sports Science and Coaching, 7, 177–180.

Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J. B. (2017). Effectiveness of an individualized training based on force-velocity profiling during jumping. Frontiers in Physiology, 7(1), 1–13.

Logan, P., Fornasiero, D., Abernethy, P., & Lynch, K. (2000). Protocols for the Assessment of Isoinertial Strength. In C. J. Gore (Ed.), Physiological Tests for Elite Athletes (pp. 200–222). IL: Human Kinetics.

Massuça, L., & Fragoso, I. (2013). A multidisciplinary approach of success in team-handball. Apunts Medicina de l’Esport, 48(180), 143–151.

Mendez-Villanueva, A., Bishop, D., & Hamer, P. (2007). Reproducibility of a 6-s maximal cycling sprint test. Journal of Science and Medicine in Sport, 10(5), 323–326.

Morin, J. B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., & Lacour, J. R. (2012). Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112(11), 3921–3930.

Newton, R., & Kraemer, W. (1994). Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Condit J, 16(5), 20–31.

Norton, K., Marfell-Jones, M., Whittingham, N., Kerr, D., Carter, L., Saddington, K., & Gore, C. (2000). Anthropometric Assessment Protocols. In C. Gore (Ed.), Physiological Tests for Elite Athletes (pp. 66–85). IL: Human Kinetics.

Patton, J., Murphy, M., & Frederick, F. (1985). Maximal Power Outputs During the Wingate Anaerobic Test. International Journal of Sports Medicine, 6(2), 82–85.

Pazin, N., Bozic, P., Bobana, B., Nedeljkovic, A., & Jaric, S. (2011). Optimum loading for maximizing muscle power output: The effect of training history. European Journal of Applied Physiology, 111(9), 2123–2130.

Pérez-Castilla, A., Jaric, S., Feriche, B., Padial, P., & García-Ramos, A. (2017). Evaluation of Muscle Mechanical Capacities through the Two-load Method. Journal of Strength and Conditioning Research, (Epub ahead of print).

Rabita, G., Dorel, S., Slawinski, J., Sàez-de-Villarreal, E., Couturier, A., Samozino, P., & Morin, J. B. (2015). Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scandinavian Journal of Medicine and Science in Sports, 25(5), 583–594.

Ravier, G., Grappe, F., & Rouillon, J. D. (2004). Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor. Journal of Sports Medicine and Physical Fitness, 44(4), 349–355.

Reilly, T., Williams, A. M., Nevill, A., & Franks, A. (2000). A multidisciplinary approach to talent identification in soccer. Journal of Sports Sciences, 18(9), 695–702.

Samozino, P., Edouard, P., Sangnier, S., Brughelli, M., Gimenez, P., & Morin, J. B. (2014). Force-velocity profile: Imbalance determination and effect on lower limb ballistic performance. International Journal of Sports Medicine, 35(6), 505–510.

Samozino, P., Rejc, E., Di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements-Altius: Citius or Fortius? Medicine and Science in Sports and Exercise, 44(2), 313–322.

Tabben, M., Chaouachi, A., Mahfoudhi, M., Aloui, A., Habacha, H., Tourny, C., & Franchini, E. (2014). Physical and physiological characteristics of high-level combat sport athletes. Journal of Combat Sports and Martial Arts, 5(1), 1–5.

Vandewalle, H., Péerès, G., & Monod, H. (1987). Standard Anaerobic Exercise Tests. Sports Medicine: An International Journal of Applied Medicine and Science in Sport and Exercise.

Vandewalle, H., Peres, G., Heller, J., Panel, J., & Monod, H. (1987). Force-velocity relationship and maximal power on a cycle ergometer - Correlation with the height of a vertical jump. European Journal of Applied Physiology and Occupational Physiology, 56(6), 650–656.

Westing, S. H., Seger, J. Y., & Thorstensson, A. (1990). Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiologica Scandinavica, 140(140), 17–22.

Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphries, B. J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine & Science in Sports & Exercise, 25(11), 1279–1286.