Débora Aparecida Knihs1, Jonathan Ache Dias2, Juliano Dal Pupo1

1Federal University of Santa Catarina, Sports Center, Physical Education Department, Florianopolis, Brazil
2Catarinense Federal Institute, Research Group on Technology, Sports and Rehabilitation, Araquari, Brazil

Effects of Different Levels of Fatigue on Vertical Jump Performance, Vertical Stiffness, and Intralimb Coordination

Monten. J. Sports Sci. Med. 2022, 11(1), Ahead of Print | DOI: 10.26773/mjssm.220301


This study aimed to investigate the acute effects of different levels of muscular fatigue on vertical jump perfor- mance, vertical stiffness, and intralimb coordination. Seventeen physically active men performed two fatigue protocols (low volume and high volume) composed of continuous vertical jumps on separate weeks. Jump height, vertical stiffness, and intralimb coordination were measured during countermovement vertical jumps prior to and immediately following the fatigue protocols. The jumps were performed on a force plate and filmed with high-speed cameras. The continuous relative phase was calculated as a measure of intralimb coordination. Mixed-model ANOVA was used to compare the variables between conditions and times. The fatigue index was greater in the high-volume protocol (27±12%) than in the low-volume protocol (16±7%). Jump height decreased (p≤0.01) after the high-volume protocol. Vertical stiffness decreased (p=0.05), and the continuous relative phase of thigh-shank coupling in the ascent phase of countermovement jumps increased (p=0.04) after both proto- cols. In conclusion, jump performance was only affected by higher fatigue indexes, while vertical stiffness and intralimb coordination were affected similarly irrespective of the fatigue levels.


stretch-shortening cycle, jump height, spring-mass model, continuous relative phase, motor control, biomechanics

View full article
(PDF – 863KB)


Byrne, C., & Eston, R. (2002). The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. Journal of Sports Science, 20(5), 417–425. https://doi.org/10.1080/026404102317366672

Byrne, C., Twist, C., & Eston, R. (2004). Neuromuscular Function After Exercise-Induced Muscle Damage Theoretical and Applied Implications. Sports Medicine, 34(1), 49-69. https://doi.org/10.2165/00007256-200434010-00005

Dal Pupo, J., Ache Dias, J., Gheller, R. G., Detanico, D., & Santos, S. G. (2013). Stiffness, intralimb coordination, and joint modulation during a continuous vertical jump test. Sports Biomechanics, 12(3), 259-271. https://doi.org/10.1080/14763141.2013.769619.

Dal Pupo, J., Detanico, D., & Dos Santos, S. G. (2012). Kinetic parameters as determinants of vertical jump performance. Revista Brasileira de Cineantropometria e Desempenho Humano, 14(1), 41-51. https://doi.org/10.5007/1980-0037.2012v14n1p41

Dias, J. A., Dal Pupo, J., Reis, D. C., Borges, L., Santos, S. G., Moro, A. R., & Borges, N. G. Jr. (2011). Validity of two methods for estimation of vertical jump height. Journal of Strength and Conditioning Research, 25(7), 2034-2039. https://doi.org/10.1519/JSC.0b013e3181e73f6e

Enoka, R.M., & Stuart, D.G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72(5), 1631-1648. https://doi.org/10.1152/jappl.1992.72.5.1631

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, J. L., Hrovatin, L. A., Parker, S. B., Doleshal, P., & Dodge, C. (2001). A new approach to monitoring exercise training. Journal of Strength and Conditioning Research, 15(1), 109-115. https://doi.org/10.1519/00124278-200102000-00019

Gheller, R. G., Dal Pupo, J., Ache-Dias, J., Detanico, D., Padulo, J., & dos Santos, S. G. (2015). Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Human Movement Science, 42, 71-80. https://doi.org/10.1016/j.humov.2015.04.010

Hamill, J., Van Emmerik, R. E. A., Heiderscheit, B. C., & Li, L. (1999). A dynamical systems approach to lower extremity running injuries. Clinical Biomechanics, 14(5), 297-308. https://doi.org/10.1016/S0268-0033(98)90092-4

Horita, T., Komi, P. V., Nicol, C., & Kyröläinen, H. (1996). Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump. European Journal of Applied Physiology, 73(5), 393-403. https://doi.org/10.1007/BF00334415

Hughes, G., & Watkins, J. (2008). Lower limb coordination and stiffness during landing from volleyball block jumps. Research in Sports Medicine, 16(2), 138–154. https://doi.org/10.1080/15438620802103999

James, R. C., Dufek, J. S., & Bates, B. T. (2006). Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk During Landing. Research Quarterly for Exercise and Sport, 77(1), 1-13. https://doi.org/10.1080/02701367.2006.10599346

Kirby, T. J., McBride, J. M., Haines, T. L., & Dayne, A. M. (2011). Relative net vertical impulse determines jumping performance. Journal of Applied Biomechanics, 27(3), 207-2014. https://doi.org/10.1123/jab.27.3.207

Komi, P. V. (2000). Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. Journal of Biomechanics, 33(10), 1197-1206. https://doi.org/10.1016/S0021-9290(00)00064-6

Kuitunen, S., Avela, J., Kyröläinen, H., Nicol, C., & Komi, P. V. (2002). Acute and prolonged reduction in joint stiffness in humans after exhausting stretch–shortening cycle exercise. European Journal of Applied Physiology, 88(1-2), 107–116. https://doi.org/10.1007/s00421-002-0669-2.

Kuitunen, S., Kyröläinen, H., Avela, J., & Komi, P. V. (2007). Leg stiffness modulation during exhaustive stretch–shortening cycle exercise. Scandinavian Journal of Medicine and Science in Sports, 17(1), 67–75. https://doi.org/10.1111/j.1600-0838.2005.00506.x

Lazaridis, S., Patikas, D. A., Bassa, E., Tsatalas, T., Hatzikotoulas, K., Ftikas, C., & Kotzamanidis, C. (2017). The acute effects of an intense stretch-shortening cycle fatigue protocol on the neuromechanical parameters of lower limbs in men and prepubescent boys. Journal of Sports Sciences, 8(2), 1-9. https://doi.org/10.1080/02640414.2017.1287932

Madigan, M. L., & Pidcoe, P. E. (2003). Changes in landing biomechanics during a fatiguing landing activity. Journal of Electromyography and Kinesiology, 13(5), 491-498. https://doi.org/10.1016/S1050-6411(03)00037-3.

McMahon, J. J., Comfort, P., & Pearson, S. (2012). Lower limb stiffness: Effect on performance and training considerations. Strength & Conditioning Journal, 34(6), 94–101. https://doi.org/10.1519/SSC.0b013e3182781b4e

Mudie, K. L., Gupta, A., Green, S., & Clothier, P. J. (2016). Adaptation of lower limb movement patterns when maintaining performance in the presence of muscle fatigue. Human Movement Science, 48, 28–36. https://doi.org/10.1016/j.humov.2016.04.003

Nicol, C., Avela, J., & Komi, P. (2006). The Stretch-Shortening Cycle A Model to Study Naturally Occurring Neuromuscular Fatigue. Sports Medicine, 36(11), 977-999. https://doi.org/10.2165/00007256-200636110-00004

Padua, D. A., Arnold, A. L., Perrin, D. H., Gansneder, B. M., Carcia, C. R., & Granata, K. P. (2006). Fatigue, vertical leg stiffness and stiffness control strategies in males and females. Journal of Athletic Training, 41(3), 294–304.

Rodacki, A. L. F., Fowler, N. E., & Bennett, S. J. (2001). Multi-segment coordination: Fatigue effects. Medicine and Science in Sports and Exercise, 33(1), 1157– 1167. https://doi.org/10.1097/00005768-200107000-00013

Rodacki, A. L. F., Fowler, N. E., & Bennett, S. J. (2002). Vertical jump coordination: Fatigue effects. Medicine and Science in Sports and Exercise, 34(7), 105–116. https://doi.org/10.1097/00005768-200201000-00017

Sahlin, K. (1992). Metabolic factors in fatigue. Sports Medicine, 13(2), 99-107. https://doi.org/10.2165/00007256-199213020-00005

Serpell, B. G., Ball, N. B., Scarvell, J. M., & Smith, P. N. (2012). A review of models of vertical, leg and knee stiffness in adults for running, jumping or hopping tasks. Journal of Sports Sciences, 30(13), 1347–1363. https://doi.org/10.1080/02640414.2012.710755

Twist, C., & Eston, R. (2005). The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. European Journal of Applied Physiology, 94(5-6), 652–658. https://doi.org/10.1007/s00421-005-1357-9

Williams, J. H., & Klug, G. (1995). Calcium exchange hypotesis of skeletal muscle fatigue: a brief review. Muscle and Nerve, 18(4), 421-434. https://doi.org/10.1002/mus.880180409

Zhang, X., Xia, R., Dai, B., Sun, X., & Fu, W. (2018). Effects of exercise-induced fatigue on lower extremity joint mechanics, stiffness, and energy absorption during landings. Journal of Sports Science & Medicine, 17(4), 640-649.