kaufen sie steroide online in deutschland
The Relationship between Objectively Measured Physical Activity and Fundamental Motor Skills in 8 to 11 Years Old Children from the Czech Republic - Montenegrin Journal of Sports Science and Medicine

Vlado Balaban1

1Palacky University, Faculty of Physical Culture, Olomouc, Czech Republic

The Relationship between Objectively Measured Physical Activity and Fundamental Motor Skills in 8 to 11 Years Old Children from the Czech Republic

Monten. J. Sports Sci. Med. 2018, 7(2), 11-16 | DOI: 10.26773/mjssm.180902


The aim of this research was to explore the relationship between objectively measured physical activity and fundamental motor skills in 8-to-11-year-old children from the Czech Republic. The research sample consisted of 201 children (108 boys and 93 girls) aged 8-11 from Olomouc, Czech Republic. The Test of Gross Motor Development 2 was used to assess the level of children’s fundamental motor skills. Furthermore, an ActiGraph GTX3 device accelerometer was used for the objective measurement of physical activity levels. The results have shown a low-to-medium correlation between moderate to vigorous physical activity and locomotor motor skills among the total sample, as well as between vigorous physical activity and object control skills in the sample of boys. Fundamental motor skills are essential factors for children’s participation in organized and free-time physical activities. There is a commitment to develop fundamental motor skills in children, especially object control motor skills in girls.


motor development, accelerometers, primary school children

View full article
(PDF – 116KB)


Bassett, D. R., Troiano, R. P., McClain, J. J., Wolff, D. L. (2015). Accelerometer-based physical activity: Total volume per day and standardized measures. Medicine and Science in Sports and Exercise, 47(4), 833-838.

Beets, M. W., Bornstein, D., Dowda, M., & Pate, R. R. (2011). Compliance with national guidelines for physical activity in US preschoolers: Measurement and interpretation. Pediatrics, 127(4), 658-664.

Burns, R. D., Brusseau, T. A., & Hannon, J. C. (2017). Multivariate associations among health-related fitness, physical activity, and TGMD-3 test items in disadvantaged children from low-income families. Perceptual and Motor Skills, 124(1), 86-104.

Cain, K. L., Conway, T. L., Adams, M. A., Husak, L. E., & Sallis, J. F. (2013). Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 51-57.

Cameron, C., Craig, C. L., Bauman, A., & Tudor-Locke, C. (2016). CANPLAY study: Secular trends in steps/day amongst 5-19-year-old Canadians between 2005 and 2014. Preventive Medicine, 86(1), 28-33.

Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131.

Castelli, D. M., & Valley, J. A. (2007). Chapter 3: The relationship of physical fitness and motor competence to physical activity. Journal of Teaching in Physical Education, 26(4), 358- 374.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.

Colley, R. C., Janssen, I., & Tremblay, M. S. (2012). Daily step target to measure adherence to physical activity guidelines in children. Medicine and Science in Sports Exercise, 44(5), 977-982.

de Vries, S. I., Bakker, I., Hopman-Rock, M., Hirasing, R. A., & van Mechelen, W. (2006). Clinimetric review of motion sensors in children and adolescents. Journal of clinical epidemiology, 59(7), 670-680.

Erwin, H. E., & Castelli, D. M. (2008). National physical education standards: A summary of student performance and its correlates. Research Quarterly for Exercise and Sport, 79(4), 495-505.

Freedson, P. S., Pober, D., & Janz, K. F. (2005). Calibration of accelerometer output for children. Medical Science of Sports Exercise, 37(Suppl. 11), 523-530.

Hallal, P. C., Andersen, L. B., Bull, F. C., Guthold, R., Haskell, W., Ekelund, U., & Lancet Physical Activity Series Working Group. (2012). Global physical activity levels: surveillance progress, pitfalls, and prospects. The Lancet, 380(9838), 247-257.

Hardy, L. L., Reinten-Reynolds, T., Espinel, P., Zask, A., & Okely, A. D. (2012). Prevalence and correlates of low fundamental movement skill competency in children. Pediatrics, 130(2), 390-398.

Hume, C., Okely, A., Bagley, S., Telford, A., Booth, M., Crawford, D., & Salmon, J. (2008). Does weight status influence associations between children’s fundamental movement skills and physical activity? Research Quarterly for Exercise and Sport, 79(2), 158-165.

Janssen, I., & LeBlanc, A. G. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 7(40), 1-16.

Logan, S. W., Webster, E. K., Getchell, N., Pfeiffer, K. A., & Robinson, L. E. (2015). Relationship between fundamental motor skill competence and physical activity during childhood and adolescence: A systematic review. Kinesiology Review, 4(4), 416-426.

Lopes, V. P., Maia, J. A. R., Rodrigues, L. P., & Malina, R. M. (2012). Motor coordination, physical activity and fitness as predictors of longitudinal change in adiposity during childhood. European Journal of Sport Science, 12(4), 384-391.

Lubans, D. R., Morgan, P. J., Cliff, D. P., Barnett, L. M., & Okely, A. D. (2010). Fundamental movement skills in children and adolescents. Sports Medicine, 40(12), 1019-1035.

Morrow, J. R., Tucker, J. S., Jackson, A. W., Martin, S. B., Greenleaf, C. A., & Petrie, T. A. (2013). Meeting physical activity guidelines and health-related fitness in youth. American Journal of Preventive Medicine, 44(5), 439-444.

Puyau, M. R., Adolph, A. L., Vohra, F. A., & Butte, N. F. (2002). Validation and calibration of physical activity monitors in children. Obesity Research, 10(3), 150-157.

Sigmundová, D., & Sigmund, E. (2015). Trendy v pohybovém chování českých dětí a adolescentů. Olomouc: Univerzita Palackého.

Sigmund, E., El Ansari, W., & Sigmundová, D. (2012). Does school-based physical activity decrease overweight and obesity in children aged 6–9 years? A two-year non-randomized longitudinal intervention study in the Czech Republic. BMC Public Health, 12(570), 1-13.

Slykerman, S., Ridgers, N. D., Stevenson, C., & Barnett, L. M. (2016). How important is young children’s actual and perceived movement skill competence to their physical activity? Journal of Science and Medicine in Sport, 19(6), 488-492.

Stodden, D., & Goodway, J. D. (2007). The dynamic association between motor skill development and physical activity. Journal of Physical Education, Recreation, and Dance, 78(8), 33-49.

Stodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290-306.

Šnoblová, R., Jakubec, L., Sigmund, E., & Sigmundová, D. (2015). Srovnání školní a celodenní pohybové aktivity 9–10letých děvčat a chlapců. Tělesná kultura, 38(1), 92-106.

Troiano, R. P., Berrigani, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181-188.

Tudor-Locke, C., Craig, C. L., Beets, M. W., Belton, S., Cardon, G. M., Duncan, S., … Blair, S. N. (2011). How many steps/day are enough? For children and adolescents. International Journal of Behavioral Nutrition and Physical Activity, 8(78), 1-14.

Ulrich, D. A. (2000). The test of gross motor development. (2nd ed.) Austin, TX: PRO-ED.

United States Department of Health and Human Services (1996). Physical activity and health: A report of the surgeon general. Department of Health and Human Services. Retrieved from

Vanderloo, L. M., Di Cristofaro, N. A., Proudfoot, N. A., Tucker, P., Timmons, & Timmons, B. W. (2015). Comparing the Actical and Actigraph approach to measuring young children’s physical activity levels and sedentary time. Pediatric Exercise Science, 28(1), 133-142.

Wrotniak, B. H., Epstein, L. H., Dorn, J. M., Jones, K. E., & Kondilis, V. A. (2006). The relationship between motor proficiency and physical activity in children. Pediatrics, 118(6), 1758-1765.