Erdem Atalay1, Celil Kaçoğlu2, Ufuk Şekir3

1Eskişehir Osmangazi University, Faculty of Medicine, Department of Sports Medicine, Eskişehir, Turkey
2Eskisehir Technical University, Faculty of Sport Sciences, Department of Coaching Education, Eskisehir, Turkey
3Bursa Uludağ University, Faculty of Medicine, Department of Sports Medicine, Bursa, Turkey

Effect of Caffeine Ingestion Before or After Muscle Damage on Delayed Onset Muscle Soreness: A Meta-Analysis of Randomized Controlled Trials

Monten. J. Sports Sci. Med. 2025, 14(1), Ahead of Print | DOI: 10.26773/mjssm.250306

Abstract

Objective: The present study aimed to conduct a meta-analysis based on available randomized controlled trial data to evaluate the effect of pre- or post-exercise caffeine ingestion on pain in individuals with Delayed onset muscle soreness. Methods: PubMed, Web of Science, Scopus, and SPORTDiscus databases were systematically searched (from inception to December 2023) to identify randomized controlled trials evaluating the effectiveness of caffeine on muscle pain before and after exercise damage. Visual analog scale was determined as the outcome measure. To compare the means and calculate the overall effect size “Cohen’s d” coefficient was used. Cochran Q test and I2 statistics were used to evaluate heterogeneity between studies. Results: Eight randomized controlled trials were analyzed as part of the meta-analysis. 5-6 mg/kg caffeine did not significantly reduce visual analog scale at 24 hours when ingested pre-damage ([Standardized Mean Difference (SMD) = -0,022, p=0,920, I2 : 0%]), and VAS at 24, 48, and 72 hours when caffeine was used post-damage ([SMD = -0,568, p=0,135, I2 : 75,89%], [SMD = -0,169, p=0,747, I2 : 78,61%], [SMD = -0,181, p=0,523, I2 : 2,78%], respectively). Conclusion: Consuming 5-6 mg/kg of caffeine before or after muscle damage is not sufficient to reduce delayed onset muscle soreness related muscle pain. The potential effectiveness of 3mg/kg caffeine in preventing or reducing delayed onset muscle soreness pain seems promising. More studies are needed to evaluate caffeine at different doses and periods.

Keywords

caffeine, muscle pain, muscle soreness, visual analog scale, meta-analysis



View full article
(PDF – 915KB)

References

Al-Nawaiseh, A. M., Pritchett, R. C., Pritchett, K. K., Bataineh, M. F., Taifour, A. M., Bellar, D., Schoeff, M. A., Fox, B., Judge, A., & Judge, L. W. (2022). No significant effect of caffeine on five kilometer running performance after muscle damage. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International De Vitaminologie Et De Nutrition, 92(5–6), 357–365. https://doi.org/10.1024/0300-9831/a000683

Bunsawat, K., White, D. W., Kappus, R. M., & Baynard, T. (2015). Caffeine delays autonomic recovery following acute exercise. European Journal of Preventive Cardiology, 22(11), 1473–1479. https://doi.org/10.1177/2047487314554867

Caldwell, A. R., Tucker, M. A., Butts, C. L., McDermott, B. P., Vingren, J. L., Kunces, L. J., Lee, E. C., Munoz, C. X., Williamson, K. H., Armstrong, L. E., & Ganio, M. S. (2017). Effect of Caffeine on Perceived Soreness and Functionality Following an Endurance Cycling Event. Journal of Strength and Conditioning Research, 31(3), 638–643. https://doi.org/10.1519/JSC.0000000000001608

Chen, H.-Y., Chen, Y.-C., Tung, K., Chao, H.-H., & Wang, H.-S. (2019). Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: A double-blind randomized trial. Journal of Applied Physiology (Bethesda, Md.: 1985), 127(3), 798–805. https://doi.org/10.1152/japplphysiol.01108.2018

Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine (Auckland, N.Z.), 33(2), 145–164. https://doi.org/10.2165/00007256-200333020-00005

Clarkson, P. M., & Sayers, S. P. (1999). Etiology of exercise-induced muscle damage. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee, 24(3), 234–248. https://doi.org/10.1139/h99-020

Del Coso, J., Muñoz, G., & Muñoz-Guerra, J. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 36(4), 555–561. https://doi.org/10.1139/h11-052

Derry, C. J., Derry, S., & Moore, R. A. (2014). Caffeine as an analgesic adjuvant for acute pain in adults. The Cochrane Database of Systematic Reviews, 2014(12), CD009281. https://doi.org/10.1002/14651858.CD009281.pub3

Doherty, M., Smith, P., Hughes, M., & Davison, R. (2004). Caffeine lowers perceptual response and increases power output during high-intensity cycling. Journal of Sports Sciences, 22(7), 637–643. https://doi.org/10.1080/02640410310001655741

Drevon, D., Fursa, S. R., & Malcolm, A. L. (2017). Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behavior Modification, 41(2), 323–339. https://doi.org/10.1177/0145445516673998

Fogaça, L. J., Santos, S. L., Soares, R. C., Gentil, P., Naves, J. P., Dos Santos, W. D., Pimentel, G. D., Bottaro, M., & Mota, J. F. (2020). Effect of caffeine supplementation on exercise performance, power, markers of muscle damage, and perceived exertion in trained CrossFit men: A randomized, double-blind, placebo-controlled crossover trial. The Journal of Sports Medicine and Physical Fitness, 60(2), 181–188. https://doi.org/10.23736/S0022-4707.19.10043-6

Ganio, M. S., Johnson, E. C., Lopez, R. M., Stearns, R. L., Emmanuel, H., Anderson, J. M., Casa, D. J., Maresh, C. M., Volek, J. S., & Armstrong, L. E. (2011). Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiology & Behavior, 102(3–4), 429–435. https://doi.org/10.1016/j.physbeh.2010.12.005

Graham, T. E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine (Auckland, N.Z.), 31(11), 785–807. https://doi.org/10.2165/00007256-200131110-00002

Green, M. S., Martin, T. D., & Corona, B. T. (2018). Effect of Caffeine Supplementation on Quadriceps Performance After Eccentric Exercise. Journal of Strength and Conditioning Research, 32(10), 2863–2871. https://doi.org/10.1519/JSC.0000000000002530

Hübscher, M., Vogt, L., Bernhörster, M., Rosenhagen, A., & Banzer, W. (2008). Effects of acupuncture on symptoms and muscle function in delayed-onset muscle soreness. Journal of Alternative and Complementary Medicine (New York, N.Y.), 14(8), 1011–1016. https://doi.org/10.1089/acm.2008.0173

Hurley, C. F., Hatfield, D. L., & Riebe, D. A. (2013). The effect of caffeine ingestion on delayed onset muscle soreness. Journal of Strength and Conditioning Research, 27(11), 3101–3109. https://doi.org/10.1519/JSC.0b013e3182a99477

Kalmar, J. M. (2005). The influence of caffeine on voluntary muscle activation. Medicine and Science in Sports and Exercise, 37(12), 2113–2119. https://doi.org/10.1249/01.mss.0000178219.18086.9e

Lewis, P. B., Ruby, D., & Bush-Joseph, C. A. (2012). Muscle soreness and delayed-onset muscle soreness. Clinics in Sports Medicine, 31(2), 255–262. https://doi.org/10.1016/j.csm.2011.09.009

Maridakis, V., O’Connor, P. J., Dudley, G. A., & McCully, K. K. (2007). Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. The Journal of Pain, 8(3), 237–243. https://doi.org/10.1016/j.jpain.2006.08.006

Matsumura, M. D., Zavorsky, G. S., & Smoliga, J. M. (2015). The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness. Phytotherapy Research: PTR, 29(6), 887–893. https://doi.org/10.1002/ptr.5328

Motl, R. W., O’connor, P. J., Tubandt, L., Puetz, T., & Ely, M. R. (2006). Effect of caffeine on leg muscle pain during cycling exercise among females. Medicine and Science in Sports and Exercise, 38(3), 598–604. https://doi.org/10.1249/01.mss.0000193558.70995.03

Muljadi, J. A., Kaewphongsri, P., Chaijenkij, K., & Kongtharvonskul, J. (2021). Effect of caffeine on delayed-onset muscle soreness: A meta-analysis of RCT. Bulletin of the National Research Centre, 45(1), 197. https://doi.org/10.1186/s42269-021-00660-5

Pedersen, D. J., Lessard, S. J., Coffey, V. G., Churchley, E. G., Wootton, A. M., Ng, T., Watt, M. J., & Hawley, J. A. (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(1), 7–13. https://doi.org/10.1152/japplphysiol.01121.2007

Pollock, N., James, S. L. J., Lee, J. C., & Chakraverty, R. (2014). British athletics muscle injury classification: A new grading system. British Journal of Sports Medicine, 48(18), 1347–1351. https://doi.org/10.1136/bjsports-2013-093302

Santos-Mariano, A. C., Tomazini, F., Felippe, L. C., Boari, D., Bertuzzi, R., De-Oliveira, F. R., & Lima-Silva, A. E. (2019). Effect of caffeine on neuromuscular function following eccentric-based exercise. PloS One, 14(11), e0224794. https://doi.org/10.1371/journal.pone.0224794

Sawynok, J. (1998). Adenosine receptor activation and nociception. European Journal of Pharmacology, 347(1), 1–11. https://doi.org/10.1016/s0014-2999(97)01605-1

Sökmen, B., Armstrong, L. E., Kraemer, W. J., Casa, D. J., Dias, J. C., Judelson, D. A., & Maresh, C. M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength and Conditioning Research, 22(3), 978–986. https://doi.org/10.1519/jsc.0b013e3181660cec

Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine (Auckland, N.Z.), 44 Suppl 2(Suppl 2), S175-184. https://doi.org/10.1007/s40279-014-0257-8

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Research Ed.), 366, l4898. https://doi.org/10.1136/bmj.l4898

Tauler, P., Martinez, S., Martinez, P., Lozano, L., Moreno, C., & Aguiló, A. (2016). Effects of Caffeine Supplementation on Plasma and Blood Mononuclear Cell Interleukin-10 Levels After Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 26(1), 8–16. https://doi.org/10.1123/ijsnem.2015-0052

Tauler, P., Martínez, S., Moreno, C., Monjo, M., Martínez, P., & Aguiló, A. (2013). Effects of caffeine on the inflammatory response induced by a 15-km run competition. Medicine and Science in Sports and Exercise, 45(7), 1269–1276. https://doi.org/10.1249/MSS.0b013e3182857c8a