Rohit K. Thapa1, Utsav Chaware2, Bhargav Sarmah2, José Afonso3, Jason Moran4, Helmi Chaabene5,6, Rodrigo Ramirez-Campillo7
1University of Guilan, Faculty of Sport Sciences, Department of Exercise Physiology, Rasht, Iran; Roudbar Branch, Islamic Azad University, Roudbar, Iran
2School of Physical Education and Sports, Rashtriya Raksha University, Gandhinagar 382305, India
3Centre for Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
4School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex CO43SQ, United Kingdom
5Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469 Potsdam, Germany
6High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef 7100. Tunisia
7Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation
Sciences, Universidad Andres Bello, Santiago 7591538 Chile
The effects of single and combined jump exercises utilizing fast and slow stretch-shortening cycle on physical fitness measures in healthy adult males: A randomized controlled trial
Monten. J. Sports Sci. Med. 2024, 13(1), 65-74 | DOI: 10.26773/mjssm.240308
Abstract
This study aimed to compare the effects of six-week volume-equated jump training using drop jump (DJ), countermovement jump (CMJ), or a combination of both (COMB) on the physical fitness of adult males. Participants were randomly assigned to DJ (n=10), CMJ (n=9), or COMB (n=10) training groups or an active control group (n=7). Performance data were collected for 10-m and 30-m sprint, DJ, CMJ, standing long jump (SLJ), triple-hop jump, change of direction speed (CODS), and maximal isometric strength. The DJ demonstrated improvements in the 10-m sprint, CMJ, and SLJ (g=0.62–1.13, %Δ=3.0–10.8). The CMJ group improved in the 10-m and 30-m sprints, CODS, CMJ and SLJ (g=0.34–1.17, %Δ=3.4–10.5). The COMB group displayed progress in CMJ and SLJ (g=0.46–0.61, %Δ=6.4–8.6). In comparison to the control and COMB groups, the DJ and CMJ groups improved the 10-m sprint (p=0.008, ηp2=0.311), and in comparison to the control group, the CMJ group improved SLJ (p=0.037, ηp2=0.220). To conclude, the findings presented here deviate from the training principle of specificity, particularly in relation to ground contact time. This suggests that the classification of jump exercises into fast- and slow-SSC categories based solely on ground contact time might oversimplify a more intricate phenomenon.
Keywords
Plyometric exercise; human physical conditioning; resistance training; muscle strength; athletic performance
View full article
(PDF – 612KB)
References
Ammann, R., Taube, W., & Wyss, T. (2016). Accuracy of partwear inertial sensor and optojump optical measurement system for measuring ground contact time during running. Journal of Strength and Conditioning Research, 30(7), 2057-2063. https://doi.org/10.1519/jsc.0000000000001299
Aragón-Vargas, L. F., & Gross, M. M. (1997). Kinesiological factors in vertical jump performance: Differences among individuals. Journal of Applied Biomechanics, 13(1), 24-44. https://doi.org/10.1123/jab.13.1.24
Asadi, A., Arazi, H., Young, W. B., & Sáez de Villarreal, E. (2016). The effects of plyometric training on change-of-direction ability: A meta-analysis. International Journal of Sports Physiology and Performance, 11(5), 563-573. https://doi.org/10.1123/ijspp.2015-0694
ASCM. (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
Asmussen, E., & Bonde-Petersen, F. (1974). Storage of elastic energy in skeletal muscles in man. Acta Physiologica Scandinavica, 91(3), 385-392. https://doi.org/10.1111/j.1748-1716.1974.tb05693.x
Bijur, P. E., Silver, W., & Gallagher, E. J. (2001). Reliability of the visual analog scale for measurement of acute pain. Academic Emergency Medicine, 8(12), 1153-1157. https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
Bobbert, M. F., Gerritsen, K. G., Litjens, M. C., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28(11), 1402-1412. https://doi.org/10.1097/00005768-199611000-00009
Bogdanis, G. C., Tsoukos, A., Kaloheri, O., Terzis, G., Veligekas, P., & Brown, L. E. (2019). Comparison between unilateral and bilateral plyometric training on single- and double-leg jumping performance and strength. Journal of Strength and Conditioning Research, 33(3), 633-640. https://doi.org/10.1519/jsc.0000000000001962
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second ed.). Lawrence Erlbaum Associates.
Coşkun, B., Aras, D., Akalan, C., Kocak, S., & Hamlin, M. J. (2022). Plyometric training in normobaric hypoxia improves jump performance. International Journal of Sports Medicine, 43(6), 519-525. https://doi.org/10.1055/a-1656-9677
Coyle, E. F. (1995). Integration of the physiological factors determining endurance performance ability. Exercise and Sport Sciences Reviews, 23, 25-63.
Davies, G., Riemann, B. L., & Manske, R. (2015). Current concepts of plyometric exercise. International Journal of Sports Physical Therapy, 10(6), 760-786.
Dello Iacono, A., Martone, D., Milic, M., & Padulo, J. (2017). Vertical- vs. Horizontal-oriented drop jump training: Chronic effects on explosive performances of elite handball players. Journal of Strength and Conditioning Research, 31(4), 921-931. https://doi.org/10.1519/jsc.0000000000001555
Dos'Santos, T., McBurnie, A., Thomas, C., Comfort, P., & Jones, P. A. (2020). Biomechanical determinants of the modified and traditional 505 change of direction speed test. Journal of Strength and Conditioning Research, 34(5), 1285-1296. https://doi.org/10.1519/jsc.0000000000003439
Duda, M. (1988). Plyometrics: A legitimate form of power training? The Physician and Sportsmedicine, 16(3), 212-218. https://doi.org/10.1080/00913847.1988.11709466
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163. https://doi.org/10.1016/j.jcm.2016.02.012
Laurent, C., Baudry, S., & Duchateau, J. (2020). Comparison of plyometric training with two different jumping techniques on achilles tendon properties and jump performances. Journal of Strength and Conditioning Research, 34(6), 1503-1510. https://doi.org/10.1519/jsc.0000000000003604
Loturco, I., Pereira, L. A., Kobal, R., Zanetti, V., Kitamura, K., Abad, C. C., & Nakamura, F. Y. (2015). Transference effect of vertical and horizontal plyometrics on sprint performance of high-level u-20 soccer players. Journal of Sports Sciences, 33(20), 2182-2191. https://doi.org/10.1080/02640414.2015.1081394
Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859-895. https://doi.org/10.2165/11318370-000000000-00000
Martín-Fuentes, I., & van den Tillaar, R. (2022). Relationship between step-by-step foot kinematics and sprint performance. International Journal of Environmental Research and Public Health, 19(11). https://doi.org/10.3390/ijerph19116786
McMahon, J. J., Suchomel, T. J., Lake, J. P., & Comfort, P. (2018). Understanding the key phases of the countermovement jump force-time curve. Strength and Conditioning Journal, 40(4), 96-106. https://doi.org/10.1519/ssc.0000000000000375
Mero, A., Komi, P. V., & Gregor, R. J. (1992). Biomechanics of sprint running. A review. Sports Medicine, 13(6), 376-392. https://doi.org/10.2165/00007256-199213060-00002
Moran, J., Liew, B., Ramirez-Campillo, R., Granacher, U., Negra, Y., & Chaabene, H. (2023). The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. Journal of Sport and Health Science, 12(2), 236-245. https://doi.org/10.1016/j.jshs.2021.05.005
Moran, J., Ramirez-Campillo, R., Liew, B., Chaabene, H., Behm, D. G., García-Hermoso, A., Izquierdo, M., & Granacher, U. (2021). Effects of vertically and horizontally orientated plyometric training on physical performance: A meta-analytical comparison. Sports Medicine, 51(1), 65-79. https://doi.org/10.1007/s40279-020-01340-6
Pedley, J. S., Lloyd, R. S., Read, P., Moore, I. S., & Oliver, J. L. (2017). Drop jump: A technical model for scientific application. Strength and Conditioning Journal, 39(5), 36-44. https://doi.org/10.1519/ssc.0000000000000331
Ramirez-Campillo, R., Álvarez, C., García-Hermoso, A., Ramírez-Vélez, R., Gentil, P., Asadi, A., Chaabene, H., Moran, J., Meylan, C., García-de-Alcaraz, A., Sanchez-Sanchez, J., Nakamura, F. Y., Granacher, U., Kraemer, W., & Izquierdo, M. (2018). Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Medicine, 48(5), 1059-1081. https://doi.org/10.1007/s40279-018-0870-z
Ramirez-Campillo, R., Álvarez, C., García-Pinillos, F., García-Ramos, A., Loturco, I., Chaabene, H., & Granacher, U. (2020). Effects of combined surfaces vs. Single-surface plyometric training on soccer players' physical fitness. Journal of Strength and Conditioning Research, 34(9), 2644-2653. https://doi.org/10.1519/jsc.0000000000002929
Ramírez-Campillo, R., Burgos, C. H., Henríquez-Olguín, C., Andrade, D. C., Martínez, C., Álvarez, C., Castro-Sepúlveda, M., Marques, M. C., & Izquierdo, M. (2015). Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. Journal of Strength and Conditioning Research, 29(5), 1317-1328. https://doi.org/10.1519/jsc.0000000000000762
Ramírez-Campillo, R., Gallardo, F., Henriquez-Olguín, C., Meylan, C. M., Martínez, C., Álvarez, C., Caniuqueo, A., Cadore, E. L., & Izquierdo, M. (2015). Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. Journal of Strength and Conditioning Research, 29(7), 1784-1795. https://doi.org/10.1519/jsc.0000000000000827
Ramirez-Campillo, R., Moran, J., Chaabene, H., Granacher, U., Behm, D. G., García-Hermoso, A., & Izquierdo, M. (2020). Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scandinavian Journal of Medicine and Science in Sports, 30(6), 983-997. https://doi.org/10.1111/sms.13633
Ramirez-Campillo, R., Moran, J., Drury, B., Williams, M., Keogh, J. W., Chaabene, H., & Granacher, U. (2021). Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. Journal of Strength and Conditioning Research, 35(7), 1916-1923. https://doi.org/10.1519/jsc.0000000000003057
Ramirez-Campillo, R., Moran, J., Oliver, J. L., Pedley, J. S., Lloyd, R. S., & Granacher, U. (2022). Programming plyometric-jump training in soccer: A review. Sports (Basel), 10(6). https://doi.org/10.3390/sports10060094
Rhea, M. R., Alvar, B. A., Burkett, L. N., & Ball, S. D. (2003). A meta-analysis to determine the dose response for strength development. Medicine and Science in Sports and Exercise, 35(3), 456-464. https://doi.org/10.1249/01.Mss.0000053727.63505.D4
Rimmer, E., & Sleivert, G. (2000). Effects of a plyometrics intervention program on sprint performance. Journal of Strength and Conditioning Research, 14(3), 295-301.
Ruffieux, J., Wälchli, M., Kim, K. M., & Taube, W. (2020). Countermovement jump training is more effective than drop jump training in enhancing jump height in non-professional female volleyball players. Frontiers in Physiology, 11, 231. https://doi.org/10.3389/fphys.2020.00231
Sáez de Villarreal, E., Requena, B., & Cronin, J. B. (2012). The effects of plyometric training on sprint performance: A meta-analysis. Journal of Strength and Conditioning Research, 26(2), 575-584. https://doi.org/10.1519/JSC.0b013e318220fd03
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465-485. https://doi.org/10.2165/00007256-200434070-00005
Seiberl, W., Hahn, D., Power, G. A., Fletcher, J. R., & Siebert, T. (2021). Editorial: The stretch-shortening cycle of active muscle and muscle-tendon complex: What, why and how it increases muscle performance? Frontiers in Physiology, 12, 693141. https://doi.org/10.3389/fphys.2021.693141
Sheppard, J. M., & Young, W. B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932. https://doi.org/10.1080/02640410500457109
Singh, G., Kushwah, G., Singh, T., Ramírez-Campillo, R., & Thapa, R. K. (2022). Effects of six weeks outdoor versus treadmill running on physical fitness and body composition in recreationally active young males: A pilot study. PeerJ, 10, e13791. https://doi.org/10.7717/peerj.13791
Singh, G., Kushwah, G. S., Singh, T., Thapa, R. K., Granacher, U., & Ramirez-Campillo, R. (2022). Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males. Journal of Sports Science and Medicine, 21(2), 277-286. https://doi.org/10.52082/jssm.2022.277
Talukdar, K., Harrison, C., McGuigan, M., & Borotkanics, R. (2022). The effects of vertical vs. Horizontal plyometric training on sprinting kinetics in post peak height female student athletes. International Journal of Strength and Conditioning, 2(1). https://doi.org/10.47206/ijsc.v2i1.89
Thapa, R. K., Clemente, F. M., Moran, J., Garcia-Pinillos, F., Scanlan, A. T., & Ramirez-Campillo, R. (2023). Warm-up optimization in amateur male soccer players: A comparison of small-sided games and traditional warm-up routines on physical fitness qualities. Biology of Sport, 40(1), 321-329. https://doi.org/10.5114/biolsport.2023.114286
Thapa, R. K., Sarmah, B., Chaware, U., Afonso, J., Moran, J., Chaabene, H., & Ramirez-Campillo, R. (2024). Fast and slow jump training methods induced similar improvements in measures of physical fitness in young females. Women in Sport and Physical Activity Journal, 32(1), wspaj.2023-0071.
Thapa, R. K., Sarmah, B., Singh, T., Kushwah, G. S., Akyildiz, Z., & Ramirez-Campillo, R. (2023). Test-retest reliability and comparison of single- and dual-beam photocell timing system with video-based applications to measure linear and change of direction sprint times. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, Advance online publication, 1-9. https://doi.org/10.1177/17543371231203440
Thomas, K., French, D., & Hayes, P. R. (2009). The effect of two plyometric training techniques on muscular power and agility in youth soccer players. Journal of Strength and Conditioning Research, 23(1), 332-335. https://doi.org/10.1519/JSC.0b013e318183a01a
Tottori, N., & Fujita, S. (2019). Effects of plyometric training on sprint running performance in boys aged 9-12 years. Sports (Basel), 7(10). https://doi.org/10.3390/sports7100219
Young, W. B., Wilson, G. J., & Byrne, C. (1999). A comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. International Journal of Sports Medicine, 20(5), 295-303. https://doi.org/10.1055/s-2007-971134